Complex Numbers II Cheat Sheet

Geometric Representation of Complex Numbers

Argand Diagrams

All real numbers exist on a straight, infinite number line; all complex numbers exist beyond the real number line in the complex plane. To geometrically represent complex numbers, we use an Argand diagram which represents this complex plane.

An Argand diagram consists of two axes: the horizontal real axis and the vertical imaginary axis. Plotting complex numbers on an Argand diagram is identical to plotting Cartesian coordinates on a Cartesian
diagram. When plotting a given complex number $z=a+b i$, we treat diagram. When plotting a given complex number $z=a+b l$, we tre
the real part as the x-coordinate and the imaginary part as the y coordinate. So, the coordinate (a, b) represents the complex number $z=a+b i$. A few examples have been plotted on the right.

Example 1: Plot the complex number $z=3+2 i$ and its conjugate on an Argand diagram.
First write down the conjugate
of z.
On an Argand diagram, the
coordinates of z are $(3,2)$ and z^{*} are $(3,-2)$. Thus, both z and
z^{*} are 3 units Z^{*} are 3 units to the right on the
real axis. z is 2 units up on the real axis. z is 2 units up on the
imaginary axis, whilst z^{*} is 2 units down.

Note that on an Argand diagram, the complex conjugate of a complex number is always a reflection in the real axis.

Additive and Multiplicative Operations on an Argand Diagram
As mentioned in "Complex Numbers ${ }^{1}$ ", complex numbers add and multiply like vectors. This also applies to As mer addition, subtraction and multiplication on Argand diagrams.

Example 2: Given that $z=2+i$ and $w=1+2 i$, show $z+w, z-w$ and $z w$ on an Argand diagram.

Modulus-Argument Form
$z=a+b i$ is the Cartesian form of a complex number. A more geometrically useful way of representing complex numbers is known as the modulus-argument form.

The modulus of a complex number z is the distance from the origin to z. |t is denoted using $|z|$ or r and is given by

$$
|z|=r=\sqrt{a^{2}+b^{2}}
$$

The argument of a complex number z is th
anticlockwise angle (in radians) between the positive rea axis and the line joining z to the origin. It is denoted using $\arg (z)$ or θ and is conventionally given in the principio range $-\pi \leq \theta \leq \pi$.

To find the argument, we use $\tan \theta=\frac{|b|}{|a|}$ and then modify the result depending upon which quadrant the complex number falls in

- If θ falls in $Q_{1}\left(0 \leq \theta \leq \frac{\pi}{2}\right)$, then $\arg (z)=\arctan \left(\frac{b b}{|a|}\right)$
- If θ falls in $Q_{2}\left(\frac{\pi}{2}<\theta \leq \pi\right)$, then $\arg (z)=\pi-\arctan \left(\frac{|b|}{|a|}\right)$
- If θ falls in $Q_{3}\left(-\pi \leq \theta<-\frac{\pi}{2}\right)$, then $\arg (z)=-\left(\pi-\arctan \left(\frac{|b|}{|a|}\right)\right)$
- If θ falls in $Q_{4}\left(-\frac{\pi}{2}<\theta \leq 0\right)$, then $\arg (z)=-\arctan \left(\frac{b b}{|a|}\right)$

The modulus and argument are combined to produce the modulus-argument form:
$z=r(\cos \theta+i \sin \theta)$
We can use the above equation to convert between the modulus-argument form and Cartesian form.
Example 3: Find the modulus-argument form of the complex number $z=-3+2 i$.

Use $\pi-\arctan \left(\frac{b}{a}\right)$ to get the angle from the positive real axis to z

$$
{ }^{2,}{ }_{\pi-0.588 \mathrm{rad}=2.55 \mathrm{rad}}
$$

Express in modulus-argument form. $\quad z=-3+2 i=\sqrt{13}(\cos (2.55)+i \sin (2.55))$

Example 4: Convert $z=4\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right)$ to Cartesian form.
Expand the brackets.

$$
\begin{aligned}
& a=4 \cos \left(\frac{3 \pi}{4}\right)=4\left(-\frac{\sqrt{2}}{2}\right)=-2 \sqrt{2} \\
& b=4 \sin \left(\frac{3 \pi}{4}\right)=4 \mathrm{i}\left(\frac{\sqrt{2}}{2}\right)=(2 \sqrt{2})
\end{aligned}
$$

Express in Cartesian form.

$$
\mathrm{z}=-2 \sqrt{2}+(2 \sqrt{2}) i
$$

Multiplying and Dividing in Modulus-Argument Form

Given two complex numbers z and w, the following moduli and argument results can be used:

$$
\begin{gathered}
|z w|=|z||w| \\
\left|\frac{z}{w}\right|=\frac{|z|}{|w|} \\
\arg (z w)=\arg (z)+\arg (w) \\
\arg \left(\frac{z}{w}\right)=\arg (z)-\arg (w)
\end{gathered}
$$

Example 5: Given that $z=\sqrt{2}\left(\cos \left(\frac{3 \pi}{2}\right)+i \sin \left(\frac{3 \pi}{2}\right)\right)$ and $w=4\left(\cos \left(\frac{\pi}{2}\right)-i \sin \left(\frac{\pi}{2}\right)\right)$, find $z w$ and $\frac{z}{w}$. Give your answers in modulus-argument form

First, we must rewrite w.	$\begin{aligned} \cos (x) & =\cos (-x),-\sin (x)=\sin (-x) \\ \Rightarrow w & =4\left(\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)\right) \end{aligned}$
To find $z w$, multiply the moduli of z and w and add the arguments. Combine the results into the modulus-argument form.	$\begin{gathered} \|z w\|=\|z\|\|w\|=(\sqrt{2})(4)=4 \sqrt{2} \\ \arg (z w)=\arg (z)+\arg (w)=\frac{3 \pi}{2}-\frac{\pi}{2}=\pi \\ z w=4 \sqrt{2}(\cos (\pi)+i \sin (\pi)) \end{gathered}$
To find $\frac{z}{w^{\prime}}$, divide the moduli of z and w and subtract the arguments. Combine the results into the modulus-argument form.	$\begin{gathered} \left\|\frac{z}{w}\right\|=\frac{\|z\|}{\|w\|}=\frac{\sqrt{2}}{4} \\ \arg \left(\frac{z}{w}\right)=\arg (z)-\arg (w)=\frac{3 \pi}{2}-\left(-\frac{\pi}{2}\right) \\ =2 \pi \\ \frac{z}{w}=\frac{\sqrt{2}}{4}(\cos (2 \pi)+i \sin (2 \pi)) \end{gathered}$

